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SUMMARY 

Systematic investigations were performed on a variety of probes to 

determine their potential for possible application as sensors attached 

to helicopter blades to measure both the instantaneous angle of attack 

as well as the dynamic head during actual flight operations. After some 

preliminary considerations a sensor of essentially spherical shape, 

about 30 mm in diameter, was designed. The sensor was provided with three 

pressure ports, and it housed two pressure transducers required for 

sensing the prevailing pressures acting outside on the surface. 

The sensors were subsequently tested in the laboratory under a 

variety of flow conditions to determine their aerodynamic characteristics. 

Two series of tests were performed: in the first series the sensor was 

fixed in space while exposed to steady uniform flow, while in the second 

series the sensor was made to oscillate, thus simulating the cyclic pitch 

change of the helicopter blades. While the cyclic pitch frequencies were 

of about the same magnitude as encountered in flight, the flow velocities 

during tests fell well below those experienced in a rotating blade. The 

tests showed that the sensors performed satisfactorily under low subsonic 

flow conditions with frequencies not exceeding five Hz. 

After conclusion of the testing program, some consideration was 

given to developing theories to predict the performance of the sensor 

under a variety of flow conditions. The theories appear satisfactory 

and compare favorably with experimental results at low subsonic speeds. 

However, the case for higher subsonic velocities experienced under actual 

flight conditions remains unresolved. 



INTRODUCTION 

In the field of aeronautical research there are various devices 

commonly employed to establish flow velocity and its direction from 

the prevailing pressure measurements. In addition to the well-known 

pitot tube, used to measure velocity only, there are a variety of tubes, 

cones and spherical-head sensors which will also measure the flow 

direction. Most of the existing designs, however, are suitable only 

for steady flow conditions, that is when the flow properties remain 

unchanged long enough for observations to be made at leisure (refs. 1 

to 7). 

In aerodynamic research pertaining to the flow field around helicopter 

blades one requires sensors capable of very quickly establishing the 

prevailing pressure with minimum time delay and with high accuracy. More 

particularly, the problem presented was to design and test a sensor 

capable of measuring the instantaneous angle of attack and the dynamic 

head at a certain location of a helicopter blade under actual flight 

conditions. In addition to the requirement of rapid pressure readings, 

the design was required to be adequately strong to withstand high rates 

of accelerations, adequately rigid to move together with the blade with 

minimum deflection, and light enough to add only a minimum amount of weight 

without causing interference with the blade motion, 

To achieve the desired results, consideration was given to employing 

miniature pressure transducers capable of operating in the low-pressure 

range, rugged to withstand high accelerations, and also reliable under a 

wide range of operating temperatures. Such a transducer would be placed 

inside the probe in the immediate vicinity of the pressure-sensing ports 

in order to reduce the length of passages between the ports and the 

transducers. Placing the transducers inside the head permitted sensing 

of the pressure at the nearest point of application and allowed trans- 

mission of the electrical signal to a remote location where the amplifiers 

could be set up conveniently. 
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LIST OF SYMBOLS 

a 

b 

bO 

b12, 'a3 

C 
pi 

f 

g 

L 

P 

P t 

P 

AP 

AP.. 
11 

Ap12j AP23 

9 

r 

Re 

"r 

radius of spherical sensor head 

sphere coefficient for a real fluid flow 

sphere coefficient for ideal flow, b. = 2.25 

sphere coefficients based on measurements 

pressure coefficient at point i on the surface 

of a sphere defined as (pi - p)/l/Z U2 

frequency, Hz 

gravitational acceleration, 9.81 m/s2 

distance between the sensor head front end to 

the center of oscillation 

static pressure at porthole 

total pressure 

free-stream static pressure 

pressure differential 

pressure differential between two points i and j 

pressure differentials between portholes 1, 2 

and 2, 3, respectively 

dynamic pressure head, q = l/2 pu2 

radial direction in the spherical coordinates 

Reynolds number based on sphere diameter, m 

stagnation point 

time, s 

free airstream velocity, m/s 

relative velocity 

I 



u, v, w 

Vt 

x, y, z 

a 

B 

II 

?- 

9 

e 

eD 

OL 

%I 

el, e2, e3 

Subscripts 

1 

2 

instantaneous velocity components in x, y, and z directions, 

respectively 

sensor tangential velocity under oscillating motion, 

m/s 

Cartesian coordinates 

half of the amplitude angle, degrees 

angle due to rotation of sphere about z axis, degrees 

instantaneous change of angle due to the sensor's 

oscillating motion 

relative n 

combined relative angle 

sensor position angle, degrees 

displacement angle? degrees 

lowermost sensor position angle, degrees 

uppermost sensor position angle, degrees 

angle between undisturbed free-stream velocity 

and porthole number 

spherical head 

dynamic viscosity 

density 

velocity potential 

stream function 

angular velocity 

1, 2 or 3, respect ively, on the 

porthole one 

porthole two 
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3 

i,j 

G 

t 

U 

L 

porthole three 

location of a point on a sphere 

relative 

tangential 

upper extreme position of sensor during a stroke 

lower extreme position of sensor during a stroke 

THEORETICAL CONSIDERATIONS 

Application of Steady Potential Theory of Flow Past a Fixed Spherical 
Object for the Determination of Flow Velocity and Direction 

The pressure distribution around a truly spherical object under 

incompressible steady-flow conditions is given by the relation (ref. 8): 

pi - P, = (1 - b. sin2 ei) l/2 pU2 (11 

where the angle 9 is measured from the stagnation point S located at 
the front of the sphere as shown in figure l(a). This relation is derived 

from potential flow theory, which yields for the sphere constant b the 0 
exact value of 2.25. 

Since stagnation pressure 

Pt = P, + l/2 pu2 

Equation (1) may be written as 

pi = P, - b. q sin2 8. 1 

where q = l/2 pU2 is the dynamic head of the approaching flow. 

(21 

(3) 
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In order to establish the magnitude and,direction of the flow, it 

is required to provide three pressure ports on the meridian circle of 

the spherical object - if employed as a sensor. It is convenient to 

locate port 1 as the center, while two side ports, 2 and 3, are at equal 

distance (equal central angles) on each side of the central port 1, as 

shown in figure l(b). 

It is also useful to assign 90 degrees for the enclosed angle between 

ports 2 and 3, thus making e2 + e3 = IT/~. Assuming that the flow approaches 

the sphere at angle 8 = el, as shown in figure l(c), for Port 1 we write 

Pl = P, - boq sin2 B1 

and for ports 2 and 3 

P2 = P, - boq sin2 82 

P3.= P, - boq sin2 e3 

Thus the pressure difference between ports 2 and 3 becomes 

Ap23 = boq (sin2 e3 - sin2 02) 

and between ports 1 and 2 

(4) 

Apl2 = boq (sin2 e2 - sin2 01,) (5) 

When the flow approaches the sphere at angle 8, measured from the 

: e3 + 8 = e2 - e [see fig. 2(b) ] and center port 1, then from geometry 

8 = i/2(8, - e,) (6) 

Employing the identity 

sin2 e i - sin2 8 
j 

= sin (ei + ej) sin (ei - ej) 
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one obtains for 0 i = e2 and 8. = e3 
J 

sin" e3 - sin2 e2 = sin 28 

Similarly, since 02 = n/4 - el, 

sin2 e2 - sin2 e1 = 1 sin (a - 2e) 
A- 

Substitution of equation 

AP23 = boq sin 28 

(7) into equation (4) 

(8) 

leads to 

and substitution of equation (8) into equation (5) leads to 

ap12 = boq* sin (: - 20) 

(7) 

(91 

(10) 

Expanding equation (10) and substituting into equation (9) yields 

cos 28 = $- CAP23 + 2Ap12) (111 
0 

Upon dividing equation (9) with equation (ll), q and b. cancel and one 

obtains 

tan 28 = Ap23/@~23 + 2Ap12) 

Thus the flow angle for potential flow is 

8 = + tan-l Ap23/(A~23 + 2AP12) (12) 

With the flow angle e thus obtained, the dynamic head q can be 

calculated by employing either equation (9) or (10). 



Application of Unsteady Potential Theory to Flow Past a Spherical Object 

A spherical object attached to a helicopter blade as a sensor 

must follow the blade's cyclic motion. The periodic motion of the 

sensor superimposed on the steady flow towards the sensor results 

in unsteady flow. It is anticipated that the sensor will be attached 

to the blade with a short sting support, hence the oscillating periodic 

motion of the sensor will take place on a circular arc relative to the 

blade. The flow model thus essentially consists of a sensor of spherical 

shape subjected to cyclic motion while immersed into a steady flow as 

shown in figure 2. 

The motion of the sensor may be resolved into translation and 

rotation. The translation, in turn, may be further resolved into a 

horizontal (x) and vertical (y) component. Accordingly, the speed of 

translation has a horizontal (u) and a vertical (v) velocity component, 

which, added to the rotational velocity, leads to the solution for the 

momentary pressure distribution under unsteady flow. Rotation takes 

place about the z axis, as shown in figure 3. 

It may be shown that under unsteady flow the pressure in a fluid 

at any point is generally given by (refs. 9, 10, 11) 

p(x, t) = p, - P [ 2 + ; cm2 1 
where the time-dependent velocity potential Q, for an axisymmetric 

motion is 

+ = +(r, 0, t>. 

(13) 

The solution for 4 is known to be 

4 = -u(t) a3 cos e/2r2 (14) 
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The instantaneous horizontal speed component u(t) may be resolved 

into 

ue 
= I; a$ and u = a’ 

1 rTF r ar 

Hence 
Y 

\ 
uWa3 sin e 

ue = 2$ 
and u r 

= u(t)a3 cos e 
r3 

On the surface r = a and ur = 0; hence the contribution of u to the 

instantaneous pressure at point i on the surface becomes 

Pi("' ei, t) = p, + +p [$ (q cos2 ei - 5) - a $ cos ei] (15) 

Between ports i and j the instantaneous pressure differential 

(due to u) becomes 

AP. 
1 

l,j(u> = 2 ' 
~0s~ 8 - c0s2 8. > 

du 
i J 

- a dt ( cos ei - cosj )I (16) 

Similarly, the contribution of the vertical speed component v to 

the instantaneous pressure on the surface becomes 

~(a, e;, t) = P, + +P[$ (9 ~0s~ 8’ - 5)-a* c0.5.e. dt 1 1 (17) 

hence the pressure difference between ports i and j (due to v) becomes 

~0s~ e; - cos2 e;) - a i+ (COS e; - cos e; (18) 
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Rotation of the sphere results in an instantaneous surface velocity 

a(dB/dt) which must be resolved into the x and y directions. If 

rotation alone is considered, the relative angle n enclosed between r 
the main flow direction and the resulting relative velocity Vr is 

given by 

I 
dB 

= tan-l 
a dt cos f3 

nr dB U + a dt sin B 

while the dynamic head of the relative velocity becomes 

qr 
+q=; dB 2 

+ a dt sin B )I 
Hence the pressure differential between ports i and j (due to 

rotation) becomes 

*P* bj W = b. q, [sin2(Bj + u,) - sin' (Be + nr)] (21) 

(19) 

(20) 

In order to combine the effects of translation and rotation, a 

combined relative angle n; may be found which includes the horizontal, 

vertical, and rotational instantaneous velocities. This may be attained 

by adding all horizontal and vertical velocities, as shown in figure 3, 

and thus the relative angle becomes 

dB 
n; = tan-l 

v+adtcosD ' 

dB 
I 

(22) U+“+adtSinB 
Similarly, the combined relative dynamic head must include all 

components; hence 

9 * = dB 
u + a dt cos B (23) 

10 



Finally, the combined pressure differential between ports i and 

j becomes 

Ap? 
l,j 

- sin2 B ( i + n* )I (241 

With these relations a computer program can be written to calculate 

rl*, 9" and Ap? 
l,j ' 

Method of Simple Superposition of Velocity Vectors 

A different method from the potential flow theory is obtained by the 

simple superposition of the instantaneous sphere velocity due to its oscil- 

lation with the oncoming free flow. (Figure 2 shows a spherical sensor 

fitted to a sting oscillating about an axis of symmetry o-o' with its center 

of oscillation located at o'.) At any port i on its surface, the relative 
velocity V will be the resultant of the free-stream velocity U and r 
the instantaneous tangential velocity Vt. For a given instantaneous 

angle 0: 

Thus the resultant velocity VR becomes 

Yr = k U + Vt co.5 61)2 + (V, sin O)g1'2 

and the relative angle of incidence 

n = tan-l I Vt sin 0 

\ 
u + v cos 8 t 1 

(25) 

(26) 
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Thus the instantaneous angle of attack enclosed (at i) between Vr 

and the axis of symmetry becomes 

ct. 1 =B+r) (27) 

Assuming that pressure varies with time as the probe ocsillates 

(that is, the pressure distribution on the sphere adjusts instantaneously 

to the velocity changes), then 

Pi = Pt - boq(t) sin2 o. 1 (28) 

where both the dynamic head q(t) = l/2 oVi and the angle ai are time 
dependent. Thus the time-dependent pressure differential between ports 

i and j becomes 

*P. l,j 
= boq(t) (sin2 clj - sin2 oi) (29) 

Sinusoidal Oscillations 

In order to illustrate the potential flow solution, let us first 

assume sinusoidal oscillations and let 

0(t) = e. - a sin(2n ft) (30) 

Assuming that the port is at radius L from the center, one obtains 

the translational components 

u=v t sin 0 = L g sin 0 

v=v de 
t cos 9 = L dt cos 0 

(31) 

(32) 

The assumption of sinusoidal motion leads to simple solution. 
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Deviation from Potential Flow Theory 

Since viscosity enters "real" flow problems, it is anticipated that 

boundary-layer buildup and time delays may change the results predicted 

from potential flow theory. Since the ports are located at the front 

portion of the sphere, the effects of boundary-layer buildup and separation 

on the pressure distribution are less marked there than at the rear. 

Therefore, for the front of the sphere, under steady flow conditions, 

one may assume a "quasi-potential 'I flow solution which would predict the 

pressure distribution defined by equation (3) with the exception that 

the sphere constant bo, calculated with the ideal flow, would be 

replaced by real b. More particularly, assuming that b = b23 for p23 

and b = b12 for ~12, one obtains by equations (9) and (10) 

Ap23 = b23 q sin 28 (33) 

and 

-L--sin 1- A~12 = bl2 qa ( 4 2e> (34) 

Upon expanding equation (34) and combining with equation (33) one obtains 

cos 20 = i 
Ap23 APl2 
- + 
b23 

2---- 
bl2 

Upon dividing equation (33) with equation (35) one obtains 

*p23 
tan 20 = 

*p23 + 2 b23 *PI2 

b12 

thus 
I \ 

8 = +tan-l{ 
*p23 

b23 
*p23 + 2 - APl2 

< b12 , 

(35) 

(36) 

(37) 
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In comparing equation (37) with equation (12), one finds that in potential 

flow the angle tl depends only on the pressure differences AP23 and 

APl2, while in the quasi-potential flow it also depends on the value 

of the sphere constants b23 and b12- 

Time delays are anticipated to affect the pressure differences 

calculated with the unsteady potential flow theory. These delays are 

attributed to inertia effects of the boundary layer, and the discrepancy 

between theory and practice becomes large at higher frequencies. 

The velocity distribution near an oscillating wall has been treated 

by Stokes and Raleigh (ref. ll), and similar consideration may apply to 

the motion of the oscillating sphere. Accordingly, owing to the no-slip 

condition at the wall, the fluid velocity there must equal that of 

the wall. Therefore, the motion of the first layer nearest the wall 

must assume the instantaneous velocity of the sphere, while other layers 

built upon the first one suffer a delay because their motion is activated 

only by the viscosity and the decreasing velocity gradient between 

adjacent layers. Thus it may be anticipated that when the oscillating 

sphere, having reached dead end, suddenly changes its direction, the 

boundary layer keeps moving forward for a short period in the same 

direction the surface was moving before the change took place. While 

these phenomena are recognized, they have not been treated analytically 

because of their complexity. 

REASONS FOR EXPERIMENTS 

Potential flow theory applies to the flow around a spherical object 

only if the object is of truly spherical shape all the way around. For 

the sphere to be employed as a sensor, however, it had to be provided with 

a support which, in this particular application, was a simple sting 

attached to the rear. Once the sting was attached to the sphere, it 

changed the shape of the sphere, and this in turn was dependent on both 

the thickness and on the length of the support. It was anticipated that 

the pressure distribution would be affected to some extent also when the 

sting assumed various angles of attack, the effects of which cannot 
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readily be predicted from the existing potential flow theory. Therefore 

it became necessary to perform experiments. 

The experiments were divided into two categories: tests under 

steady and tests under unsteady flow conditions. In the steady flow 

experiments, the main concern was to check the validity of assumption 

for quasi-potential flow and to establish the sphere constant values 

as a function of sting support and Reynolds number. In the unsteady 

flow tests, the main concern was to study the effects of frequency and 

free-stream velocity on the pressure differences‘ ~12 and ~23 and 

to establish a practical testing procedure that could be employed under 

actual flight conditions. 

EXPERIMENTS UNDER STEADY FLOW CONDITIONS 

Studies of Pressure Distribution 

To obtain the pressure distribution, a spherical object of 6.35-cm 

(2.5-in.) diameter was placed into the airstream. The sphere was made 

of aluminum and was supported by a horizontal hollow shaft press-fitted 

into the "side" of the sphere right up to its center. A single pressure 

tapping was radially drilled into the surface of the sphere at a right 

angle to the axis of the hollow shaft, the hole also extending to center, 

as shown in figure 4(a). The shaft was set at a right angle to the 

airstream, and, by rotating it about its axis, the pressure distribution 

around the sphere could be obtained. Since the diameter of the shaft 

was 9.5 mm (0.375 in.), its interference with the airstream was considered 

minimal; however, it had to be reinforced for rigidity with a sleeve that 

extended through the tunnel walls. The sleeve fitted into the arbor 

extending from the turntable and was held in position by set screws. The 

angle of incidence was measured with a protractor provided with a Vernier 

scale so that the angle was measured with an accuracy of 0.1 degree. 

The pressure experienced on the surface of the sphere propagated 

through the port to the center from where it was transmitted through the 

hollow shaft to a sensitive manometer. A pitot-static tube was employed 

near the sphere to measure the velocity of the stream and to provide the 

local pressure used as reference to the pressure on the sphere surface. 
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Two types of experiments were performed. In the first type, the 

sphere alone was tested at various Reynolds numbers. In the second 

type of test, the sphere was provided with a "tail" to simulate the 

sting support. The tail consisted of a hollow circular cylinder located 

either diagonally opposite the center port or diagonally opposite the 

side ports. The experiments were first performed at the outlet of the 

open-end wind tunnel and were subsequently repeated in the closed- 

circuit wind tunnel. The experimental setup in the closed tunnel is 

shown in figure 4b, and the setup at exit of the open tunnel is shown 

in figure 5. 

Prior to each test the sphere was visually aligned so that the center 

hole faced the airstream. To check the accuracy of the visual alignment, 

the sphere was rotated to an angle, say 10 degrees, and a pressure 

measurement was taken. Subsequently, it was rotated back into the 

opposite direction to -10 degrees and the pressure was again recorded. 

If the center was correctly aligned, the two pressure readings gave 

substantially the same result. An adjustment was made if the readings 

proved unequal, and the process was repeated until the desired result 

was obtained. 

To study the effect of the tail, tests were performed with the tail 

located opposite the center port or opposite either of the two side ports. 

This was easily achieved by drilling and tapping three holes exactly 

diagonally opposite the ports located at the face of the sphere. All: 

tests performed with the 4.4 cm (1.75-in.) diameter tail were subsequently 

repeated with a 3.5-cm (1.375-in.) diameter tail [both tails were 15.2-cm 

(6-in.) long]. 

During each test the air velocity was kept constant and the incidence 

angle was varied by small steps, generally two to five degrees at a time. 

When the slope of the curves was steep, the increments were only one- 

half degrees or less as required. Air velocity was varied between 15.2 m/s 

(50 ft/s) and 70 m/s (200 f-t/s), that is, between the Reynolds number 
range 0.62 to 2.5 x 105. All test runs were made with the sphere turning 

in one direction and were repeated in the opposite direction. 
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RESULTS 

The results are presented in four sets of graphs. Figure 6 shows 
the conventional pressure distribution around 180 degrees of the isolated 

sphere, and the results are compared with the findings of another 

investigator (ref. 12). Figures 7 and 8 show results between +75 degrees. 

Figures 9 and 10 show the pressure distribution between angles C75 

degrees with the tail located diagonally opposite port 1 (center port) --- 
for both tails, 4.4-cm (1.75-in.) and 3.5-cm (1.375-in.) diameter, 

respectively. Figures 11 and 12 show results of port 2, that is, when 

the tail was displaced by 45 degrees from the centerline. Figures 13 and 

14 show results for port 3 similar to those obtained for port 2, except 

for the change in the sign of the angles. For both ports the measurements 

were taken between +105 and +20 degrees (for port 2 the range was -105 

to +20 and for port 3, -20 to +105 degrees). 

It appears from figures 6 to 8 that pressure distribution is sensitive 

to Reynolds number effects and also to the level of turbulence present in 

the airstream (ref. 13). However, the magnitude of sensitivity also 

depends on incidence. Between 0 and 30 degrees the pressure coefficient 

falls from unity (1.0) to approximately 0.6 for all spheres tested; and, 

in this range variation, the pressure coefficient proves to be insensitive 

to viscous effects. With increasing incidence, however, the sensitivity 

gradually increases and becomes greatest between 50 and 80 degrees. In 

further increasing the incidence, the sensitivity decreases again and 

becomes relatively small between 80 and 180 degrees. Furthermore, the 

sensitivity also manifests itself in a shift of the zero pressurel, 

located at the intersection of the pressure distribution curve with the 

horizontal axis. It was noticed that a marked change in the negative 

pressure peaks always occurred between 70 and 80 degrees. The shift in 

the zero pressure point may be observed from inspection of the graphs: 

at Re = 1.4 x 105 the intersection point is about +45 degrees (fig. 7), 

while the point shifts to 43.6 degrees at Re = 2.6 x lo5 as shown in 

figure 8. 

1 Zero pressure is experienced when the difference between the free-stream 
pressure and surface pressure decreases to zero. 
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The presence of the tail substantially lowered the value of -Cpmin. 

With the 3.49-cm tail Cpmin = -1.0 at Re = 0.91 x lo5 (fig. 9a), while 

-1.15 is experienced at 1.4 x lo5 (fig. 9b), and 1.23 at 2.5 x lo5 

(fig. 9c). With increasing Reynolds number, zero first shifts from 

k44.7 degrees (fig. 9a) to 244.5 degrees (fig. 9b), then further decreases 

to about +41 degrees at 2.5 x IO5 (fig. 9c). Similar results were 

found with the 4.4-cm tail (ref. 14). 

Experiments conducted at lower Reynolds numbers indicated some 

instability in the pressure which occurred at L-50 degrees when the 

3.5-cm tail was attached. The manometer oscillated periodically and 

showed at one time a value of -0.2 and a moment or two later -0.3, and 

so 2 values appear for the same incidence in figures 9a, and 9b. This 

instability was not observed in the closed tunnel at R = 2.5 x 105. e 
With the 4.4-cm tail, instability occurred around 52 degrees at low 

Reynolds numbers, but no instability was experienced at higher speeds 

(see figs. 9c and lob). 

Studies on port 2 are shown in figures 11 and 12, where the pressure 

distribution between angles of -105 and 220 degrees is presented. The 

resulting curves are superimposed for ready identification of the 

effects of Reynolds numbers ranging between 0.91 to 2.6 x 105. Pecu- 

liarities manifest themselves in the negative pressure range at lower 

Reynolds numbers; in addition to the shape changes of the curves, the 

shift in zero pressure angle and the surges resulting from instability, 

there also appears to be a break in the continuity around 45 degrees. 

This was observed only in the open tunnel. Once the Reynolds number 

attained a value of 2.4 to 2.6 x 105, the pressure distribution curve became 

rather "regular, 11 free of bumps and surges with the pressure coefficient 

attaining a minimum value of approximately -1.3 at -90 degrees. To 

facilitate interpretation of the results, the various positions of the 

tail relative to the horizontal reference line are also shown in figures 

11 and 12. Similar results were obtained for port 3, as shown in figures 

13 and 14. 
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The effects of both viscosity and turbulence level on transition 

from laminar to turbulent flow in the boundary layer are well known. It 

is therefore logical to assume that the zero pressure point is also 

affected by both. Because of the difference of turbulence level between 

the open and closed tunnels, separate experiments were conducted in the 

closed tunnel to study the effect of Reynolds number on the location of 

the zero pressure point. In other words, restricting tests to one 

tunnel eliminated the influence of turbulence level on transition by 

the other tunnel. 

Results of these experiments are presented in figure 15 where the 

zero pressure incidence angle is plotted against Reynolds numbers between 

0.55 and 2.6 x 105. It appears that below Re = 1.2 x lo5 the changes 

are small. However, a sudden drop appears at 1.2 x lo5 followed by a 

gradual decrease with increasing Reynolds number. The curves flatten 

out after R = 1.8 x lo5 e and the zero point remains fixed at 41.5 

degrees. 

APPLICATIONS OF RESULTS 

From the pressure distribution tests, the sphere constants b23 

and bl2 can be established. This entails the application of the results 

to a pair of ports, either 1 and 2 or 2 and 3, which need to be located 

at set angles. It was convenient to fix 45 degrees as the set central 

angle between ports then the central angle between ports 2 and 3 became 

a right angle. The procedure for obtaining the sphere constant was first 

to establish the angles enclosed by the portholes with the airstream 

when the sphere was set to an incidence 0. For example, when considering 

side ports 2 and 3, if 0 = -20 degrees, then for port 3 the angle 0 = 

+25 degrees and for port 2, 0 = -65 degrees. Second, for these angles 

the pressure coefficient C 
P 

was found from the experimental results. 

Thus at Re = 2.6 x lo5 the coefficients C = -0.85 and C = +0.61 were 
P2 P3 

found. Their difference AC = C - C = -1.46. 
~23 ~2 ~3 

The procedure was 

repeated for incidence angles ranging from -30 to +30 degrees in convenient 

(5-degree) steps. For convenience, table 1 gives the values of 81, 82, 
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83 at various incidences. Finally, the resulting ACp23 values were 

plotted against sin 28 for the side ports 2 and 3 as shown in figure 

16, and AC 
Pl2 

values were plotted against 1 sin(45 
J7 

- 2f3) for the 

side ports 1 and 2, as shown in figure 17. The sphere constants were 

obtained from the slopes of the curves. 

It appears from figure 16 that for side ports 2 and 3 and with the 

4.4-cm tail, the sphere constant b23 =: 2.25 at the high Reynolds number 

of 2.6 x 105, a result which completely agrees with the value of 2.25 

predicted from potential flow theory. At the same Reynolds number, the 

center and side port constant b12 = 2.23, which is a value only 0.9 

percent off 2.25. For lower Reynolds numbers, however, the sphere 

constants assume lesser values, depending on the Reynolds number, as 

shown in figures 16 and 17. 

In the determination of the sphere constant b12, only the linear 

portion of the curve was used. As it appears from figure 17, the top 

end of the curves turn around and form a loop, and the size of the loop 

seems to depend on the Reynolds number. It is noted that the function 

sin(45 - 20) attains a maximum value of 1 when the angle 8 = -22.5 degrees, 

so the extreme of the horizontal abscissa ends at& = 0.707. Since the 

experiments were conducted with angles up to 30 degrees, all angles below 

-22.5 degrees will cause the function sin(45 - 28) to have values inboard 

of the extreme; hence b12 may not be considered constant below -22.5 

degrees. 

Test on Spherical Probes Equipped with Transducers 

While the tests performed on the larger 6.35-cm (2.5-in.) spherical 

object were aimed to study the pressure distribution around the meridional 

plane, the tests of the smaller, 3.2-cm (1.25-in.) spherical sensor were 

aimed at finding how close the complete sensor unit equipped with pressure 

transducers would agree with the pressure distribution obtained on the 

larger spherical object. 

The pressure transducer and sensor design received thoughtful 

attention, and the ultimate selection was the Patterson gage (ref. 15), 

a small device which essentially consists of a variable air-gap inductance 
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type of electrical pressure gage of cylindrical shape, about 1.2 cm 

(0.5 in.) in diameter and about l-cm (0.4-in.) thick, capable of 

measuring pressure fluctuations at fairly high frequencies by using 

stretched flat diaphragms. Patterson gages were chosen because they 

were found compact and rugged as well as being insensitive to tempera- 

ture changes. The effect of an accelerating force normal to the 

diaphragm is claimed to be of the order of one percent of full scale 

per 100 g. 

Two Patterson gages were employed inside the spherical head. One 

measured the pressure differences p1 - p2 between ports 1 and 2 and the 

other measured p2 - p3 between ports 2 and 3 respectively, as shown 

schematically in figure 18(a). Each gage fitted snugly into a machined 

recess of the spherical "head." The head and its cylindrical support 

(sting or tail) were carefully machined; there were three separate pieces 

making up the head, which were fitted together making one unit after 

the gages were placed into their respective places, as shown in figure 

18(b). The electrical leads were permitted to leave at the end of the 

support which was held by a massive, cylindrical holder. Each face of 

the gage was hermetically sealed against any possible air leak with 

suitable 0 rings. The diameter of the ports was 0.343 mm (0.0135 in.), and 

the central angle enclosed between ports was 45 degrees. A photograph 

of the sensor is shown in figure 18(c). 

The Equipment Employed for Steady-Flow Testing 

of the Spherical Sensor 

A special induction tunnel was constructed for the steady flow testing 

of the spherical sensor. It consisted of a bell-mouth intake, parallel 

test section, and diffuser leading to the suction side of a centrifugal 

fan (blower), which was driven by a 4-speed electric motor rated 11 kW 

(15 HP). The test section was built of 2.54-cm (l-in.) thick, clear 

plastic with internal dimensions of 15.2 x 20.3 cm (6 x 8 in.) with a 

length of 30.5 cm (12 in.). A honeycomb was placed into the intake to 

reduce fluctuations of the approaching stream, and at outlet a foam rubber 

isolator was inserted between the diffuser and the fan to prevent 
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vibration. The air flow was induced by suction, and air speeds up to 

92 m (300 ft)/s could be obtained. A schematic plan of this small tunnel 

is shown in figure 19(a). 

The sensor was held inside the test section by a vertical support 

which interconnected .two turntables. These tables consisted of two 

circular discs situated opposite each other which fitted flush into 'the 

recessed top and bottom of the test section with their axis being 

concentric. The vertical support fastened to each disc was eccentrically 

located, and the eccentricity was about 10 cm (4 in.). The two discs 

could be turned together from the outside of the tunnel by a pair of 

lever arms which were connected by a handle outside the tunnel. The 

arms were long enough to clear the walls allowing angles of turning up 

to k32 degrees. Details of the test section are shown in figure 19(b), 

and a photograph of the tunnel is shown in figure 19(c). 

Results of Tests on Spherical Sensor Under 

Steady-Flow Conditions 

Prior to the tests on the sensors, the transducers were calibrated. 

This simple procedure essentially consisted of setting up a pressure 

difference between a chamber and ambient air pressure. By accurately 

measuring this pressure differential with a standard manometer simul- 

taneously with the pressure transducer a calibration was obtained. The 

transducer gage was connected to a carrier and amplifier unit, and a 

2-channel BRUSH 220-type chart recorder was employed to obtain the 

pressure difference signals in terms of mV on a strip chart. A sample 

record is shown in figures 20(a) and (b). It appears that the curve 

obtained shows linearity between f2 N/m2 x 103. 

The tests were performed on sensors in the induction tunnel at 

various speeds and at angles varying between -22 to +32 degrees. The 

results are shown in figure 21, where the nondimensional pressure 

differential Ap23/q and Aplp/q are plotted against incidence in the 

range of Reynolds numbers 0.473 to 1.86 x 105. While the results for 

*p23 shown in figure 21(a) are very close to the theoretical "sphere" 

coefficient, b23 = 2.25, the results shown in figure 21(b) for Ap12/q 

are about 18 percent lower, resulting in bl2 = 1.85. 
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EXPERIMENTS WITH OSCILLATING SENSOR 

Details of the Wind Tunnel and Oscillating Mechanism 

The wind tunnel employed for testing the 3.2-cm sensor was an open- 

ended, straight through-flow tunnel with a contraction ratio of 4.7:1. 

It essentially consisted of a large air intake, with an axial flow fan 

followed by a diffuser and a well-shaped contraction. The fan was 

driven by an ll-kW (15-HP) motor directly with a floating shaft arrange- 

ment that permitted the air to enter without any obstruction. A honey- 

comb and a screen were fitted across the largest cross section of the 

tunnel, thus producing a low turbulence stream at exit. Details of the 

tunnel are shown in figure 22. 

For the purpose of the experiments described in this report, the 

tunnel exit was provided with a transform duct changing the circular 

cross section to rectangular shape; this was followed by a short 

parallel duct to which the steel frame holding the oscillating mechanism 

was fitted. A short flexible wall, inserted between the exit and the 

parallel duct, served as a vibration isolator. 

The mechanism producing the oscillatory motion essentially consisted 

of a Scotch Yoke, a mechanism in which the circular motion of a pivot 

is transformed into a reciprocating motion, The pivot is usually inserted 

into an elongated slot cut into a crosshead and provided with two 

parallel guides. As the pivot rotates, it translates sideways in the slot 

while the slot translates parallel with itself. To obtain even speed the 

drive system was provided with a disc acting as a flywheel. A T-shaped 

groove was diagonally milled into the flywheel, and into this groove a slid- 

ing nut was fitted to which the pivot was mounted. By changing the position 

of the nut relative to the center of rotation of the flywheel, the radius 

of the circulatory motion of the pivot acting as a crank could be varied, 

and with this mechanism the amplitude of the oscillations could be varied. 

In addition it was found necessary to provide the mechanism with two 

springs, thus providing a counterbalance to the weight of the crosshead 

in the experimental setup. The Scotch Yoke mechanism was actuated by a 
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373-W (0.5-HP) variable speed electric motor through a vee belt drive. 

The reciprocating motion from the yoke was transferred to a cylinder 

horizontally stretched across the tunnel section to which the sensor 

was attached by a holder. While the yoke produced a reciprocating 

motion, the cylinder oscillated about its own axis. This motion was 

attained by employing a lever-arm attached to the cylinder that was 

actuated by the yoke at one end, while a vertical link pivoted to the 

other end actuated the lever arm attached to the cylinder, as shown in 

figure 23. The system was capable of producing oscillations up to 12 Hz. 

In order to measure the variation of the displacement angle 8 with 

time, a potentiometer was fitted to one end of the oscillating 

cylinder. A view of the Scotch Yoke mechanism is shown in figure 24, 

and a complete view of the test rig fitted to the end of the open 

tunnel is shown in figure 25. 

Method of Testing 

The transducers built into the sensor were first electrically 

balanced allowing a one-hour warming up period for the amplifying system. 

After the sensors were fitted into the holder of the oscillating 

cylinder, the extreme angles eu and BL were set up by manually 

turning the drive shaft. When the dead end positions were reached, a 

clinometer was placed on the sensor and the angle of incline was measured 

with an accuracy of 20.1 degree. The instantaneous pressure responses 

of the transducers *p23 = p2 - p3 and ~12 = pl - p2 were recorded on 

channel one, while the instantaneous displacement angle was recorded on 

channel two. Prior to running the tests the reference lines were 

established by running the strip chart for a short period of time. 

From the strip chart passed out by the recorder the frequency was 

determined from the linear speed of the paper. Intersection of the 

undulating line with the paper grid helped to determine the instantaneous 

angle of oscillation while the other two lines determined the instantaneous 

pressure differentials. A sample of such a record is shown in figure 20. 
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The experiments were performed either by setting the air speed 

constant and varying the frequency or by setting the frequency constant 

and varying the airspeed for a specified constant amplitude and initial 

displacement angle. 

In all tests the steady airflow velocity was measured with a 

standard pitot-static tube located halfway between the oscillating sensor 

and the tunnel wall. 

Experimental Results 

The sensor was tested within a frequency range 1 < f < 5 with the air- 

speed varying from U, = 11.6 m/s (38 ft/s) to 30 m/s (100 ft/s>. Higher fre- 

quencies were also attempted, but it was found that at higher frequencies 

(starting above 5) the signals on the strip chart became more and more 

ill defined and fuzzy as frequency was increased. In order to keep the 

variety of tests within reasonable limits, in some tests the angle of 

amplitude of oscillations (2a = 8 L + f3U) was kept constant, while the 

angle of displacement (0, = cx - BL) was varied stepwise. From the many 

experiments performed, table 1 presents a selection of samples for 

Reynolds numbers ranging from 0.55 to 1.74 with the frequency ranging 

from 1.59 to 5.05 tlz. Results of these tests are shown in figures 26 

to 28. In these figures either the nondimensional pressure differential 

Apzs/q or Aplz/q was plotted against the instantaneous position angle 0 

of the sensor. The extreme position of this angle signifies the "dead end" 

of the oscillating motion, viz +8 L and -e U' and the sign signifies 

that angles above the horizontal reference line are taken as negative 

while below the line the angles are counted as positive. During a 

complete cycle, it appears that a loop is formed. During a downstroke, 

starting from -e U' one follows (from left to right) the upper points of 

observations until the bottom of the downstroke +e L is reached; when 

turning around during the upstroke, one follows the lower observation 

points (from right to left). 

In the tests presented in figures 26 to 28, the sensor oscillated 

between the angles C+, = -8.62 and BL = +10.55 degrees measured from the 

horizontal reference line, thus having an amplitude 2a = 19.17O and 
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displacement eD = +0.96O. In figures 26 and 27 the nondimensional 

pressure differentials Ap&q and Aplz/q are plotted against 9 for 

a constant frequency with a variation of the Reynolds number. In figure 

28, however, the Reynolds number was kept constant and results were 

plotted for two different frequencies. It appears from these graphs 

that the pressure loops vary in width and the higher the frequency the 

wider they are for a specified airflow; for a specified frequency it 

is the other way around: the higher the air velocity the narrower the 

loops become. 

It appears from the results that the loops formed by the pressure 

differentials are affected by the relative airspeed experienced at the 

ports during the sensor's ocsillatory motion. It was found that during 

the downstroke the observation points fell above those points which were 

obtained during the upstroke. This may be explained by considering that 

the relative airspeed is the resultant vector of the components U (free 

airstream velocity) and of the instantaneous tangential speed of the 

sensor V t- During the entire downstroke the vector Vt points into a down- 

ward direction, thereby turning the oncoming stream upward from the horizon- 

tal by an angle +A0. In other words, during the downstroke the incidence 

increases, bringing the stagnation point closer to port 3 and resulting in 

a higher positive p3 and more negative p2 than would be experienced 

without oscillation, as shown on the pressure distribution diagram in 

figure 29(a). The opposite holds for the upstroke, when the Vt vector 

points upwards, thereby turning the oncoming stream downwards from the 

horizontal by an angle -A9 and decreasing the incidence. This results 

in a lower positive p3 and less negative ~2, as shown in figure 29(b). 

The value of Ae depends on the frequency of the sensor and on the mag- 

nitude of the free airstream. 

Comparison of Experiments with Theories 

Based on the theories presented earlier, prediction of sensor per- 

formance appears to be in close agreement with the experiments. The 

theories also confirm the existence of the loops discussed in the preceding 

section. Various oscillating frequencies, air velocities, amplitudes, 
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and displacement angles were selected for the purpose of presenting 

samples of flow conditions. These results are presented in figures 30 to 

32. 

Figures 30 and 31 show results of the nondimensional pressure diffe- 

rential Ap23/q plotted against position angle 0. Figure 30 shows the 

results for lower Reynolds number R e = 0.365 x 105, while figure 31 

shows results for a higher Reynolds number Re = 0.635 x 105. In figure 

30(a), the frequency was f = 2.43 Hz and in figure 30(b) f = 3.57 Hz. 

In figure 30 the relevant angles were eL = +7.5', f3u = -25.5', amplitude 

2a: = 33' and displacement eD = -9'. In figure 31(a), the relevant 

angles changed to BL = -4', Bu = 37.2', 2a = 33.2', BD = 20.6', and the 

frequency was f = 2.72 Hz. The frequency in figure 31(b) was f = 4.03 Hz. 

Figure 32 shows results of the nondimensional pressure differential 

p12/q plotted against position angle 0, for a Reynolds number 

Re = 0.635 x 105, and the relevant angles were BL = -9.6', eu = +lO", 

2a = +19.6', eD = 0.2O. The frequency for figure 32(a) was f = 1.84, and 

for figure 32(b), f = 5.05. 

Inspection of figures 30 to 32 shows close agreement between both 

theories, and the agreement of both theories seems to be close with the 

experiments. It appears, however, that Theory II is closer to the 

experimental points during the downstroke while Theory I in some cases is 

closer to the points observed during the upstroke. 

CONCLUSIONS 

A sensor was des igned for the instantaneous determination of f low 

direction and magnitude of an airstream flowing in the vicinity of an air- 

craft. Application of such a sensor to a helicopter blade under actual 

operational conditions was a major consideration of the design. Tests 

were performed on a model and on an actual sensor under both steady and 

unsteady flow conditions, and the responses have been carefully recorded 

and analyzed. Furthermore, theoretical studies have been made to predict 

the performance of the sensor under a variety of flow conditions. Ulti- 

mately, the experimental results were compared with theoretical predictions. 
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The following conclusions were drawn: 

Steady-Flow Tests on Both the Model and Sensor Head 

1. The results of the experiments on the model consisting of a 

6.35-cm diameter sphere show that the Reynolds number has a marked effect 

on the pressure distribution, while the presence of the tail, representing 

a sting support, has only a minor influence. 

2. Reynolds number effects are manifested both in a shift in the 

location of the zero pressure point experienced on the sphere's surface 

and in the shape of the distribution curves. 

3. These effects ultimately influence the sphere constants bp3 and 

bl2 inasmuch as their values fall below the theoretically predicted value 

of 2.25 for the lower Reynolds numbers. However, for Re = 2.6 x 105, the 

experimentally obtained sphere constants appear to be remarkably close 

indeed to 2.25: Therefore, satisfactory data will result if the operation 

of sensors is confined to Reynolds numbers of this value or greater. 

4. The central angle of 45 degrees permits the sphere to be used as 

a probe for sensing flow direction within the range of +30 to -22.5 degrees. 

5. Sensors with central angles less than or greater than 45 degrees 

can also be designed which may provide a different angular range but 

probably with reduced output. Lower output is of little concern. Improved 

linearity is important, especially if coupled with insensitivity to 

viscosity effects. 

6. Calibration of the sensor, consisting of a 3.2-cm spherical head 

with a sting support, show that the transducers built into the head 

furnished answers similar, if not completely identical, to the pressure 

distribution curves obtained on the model. The b23 sphere (or sensor) 

coefficient is slightly lower than that experienced with the model, but 

the b12 coefficient is considerably lower, thereby indicating that the 

b12 coefficient is more sensitive to viscous effects. It is noted that 

the sensor's range lies between +30 and -22.5 degrees. 
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Tests with the Sensor Under Oscillating Conditions 

7. The sensor output on the strip charts proved satisfactory in the 

frequency range 0 < f < 5 Hz, but above 5 Hz the lines on the charts 

showed increased sensitivity to vibrations which may not be the fault of 

the sensor but of the mechanical drive system. 

8. Comparison of experimental results with theory shows a satis- 

factory agreement. Both the experiments and the theoretical results show 

that under oscillating conditions the pressure differentials form a loop 

for the points recorded during downstroke and upstroke. The curves differ 

because during downstroke the instantaneous tangential speed of the 

spherical sensor increases the angle of incidence, while during the upstroke 

it decreases the incidence, resulting in a larger pressure differential 

during downstroke than during upstroke. The width of the loop was found 

to depend on the free airstream and the frequency of oscillations. 

9. In the theoretical calculations of the pressure differentials 

AP23 and A?12, the sphere coefficients have an important influence. It 

was found for the results presented the theory fitted best to the experi- 

mental points when b23 = 2.03 and b12 = 1.79 (as noted on the various 

graphs). 

10. Some disagreement between theory and experiment appears which 

is thought to have been caused by certain time lag phenomena due to unsteady 

inertial effects of the mechanical system and to boundary-layer effects so 

far unaccounted in the theories. 

It appears from these conclusions that the sensor described here has 

a definite application in exploring unsteady flow fields in the vicinity 

of aircraft. In a particular application to helicopter blades it may be 

quite easily feasible to measure the angle of attack and the dynamic head 

during actual flight operation assuming that the forward speed of the craft, 

the rotational speed of the rotor, and the blade angles due to the cyclic 
motion are simultaneously measured. 
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The tests covered a range of Reynolds numbers from 0.4 to about 

2.6 x lo5 in the low Mach number range. Since helicopter blades move at 

higher Mach numbers, it is recommended to extend these tests to cover 

the higher Mach number range as well. 
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Table 1. Samples of the Oscillating Sensor Program 

Test 
Number Re range, x lo5 

1 0.552 to 1.739 

2 0.552 to 1.159 

3 0.552 to 1.739 

4 1.159 to 1.739 

5 0.635 -8.62O to 10.55' 

Incidence 8 
range, degrees 

-8.62' to 10.55' 

-8.62O to 10.55' 

-8.62' to 10.5S" 

-8.62O to 10.5S" 

Frequency 
f range, Hz 

1.59 

2.92 

3.46 

2.92 

4.81 
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Figure l(a). Spherical object provided with one port. 

S = STAGNATION POINT 

PORT 1 

/PORT 3 

Figure l(b). Spherical object provided with three ports; 
airflow at zero incidence. 

Figure l(c). Spherical object with approaching air- 
flow U at incidence 8. 
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Figure 2. Schematic diagram of oscillating sensor motion. 

Figure 3. Components of sphere motion. 
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(a) Schematic arrangement. 

Figure 4. Sphere setup for experiments inside return circuit wind 
tunnel. 
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(b) Photograph of setup. 

Figure 4. (Concluded). 

37 



Figure 5. Experimental setup in the open wind tunnel (sphere without 
tail). 
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0 ODU SPHERE 6.25-cm DIAMETER (CLOSED TUNNEL), 
Re = 1.4 x 10 

q NPL SPHERE 15.24-cm DIAMETER (OPEN JET TUNNEL), 
Re = 1.57 x lo5 

-0.6 t 
-0.7 

-0.8 

-0.9 

-1.0 

Figure 6. Comparison between the pressure distribution obtained 
at the ODU large wind tunnel and that obtained at NPL 
(England) at about the same Reynolds number. 
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Figure 7. Pressure distribution around a 6.35-cm 
sphere without tail at R, = 1.4 x lo5 
obtained in the open wind tunnel. 
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Figure 8. Pressure distribution around a 6.35-cm sphere without 
tail at Re = 2.6 x 10 5 obtained in the closed wind 
tunnel. 
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-0.8 
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(a) Re = 0.91 x 105; open wind tunnel. 

Figure 9. Pressure distribution around a 6.35-cm sphere fitted with 
a 3.5-cm tail. 
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Figure 9. (Continued). 
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(c) Re = 2.6 x 105; closed wind tunnel. 

Figure 9. (Concluded). 

44 



PORT #1 I \TAIL 

I- 
-80 

z 0.6 * 
H 
u n 
D-l 

E i a 

0.5 

0.4 

-Om2 ANGLE, 

-0.3 

-0.4 

-0.5 

-0.6 

-0.7 

-0.8 

-0.9 

(a) Re = 0.91 x 105; closed wind tunnel. 

Figure 10. Pressure distribution around a 6.35-cm sphere 
fitted with a 4.4-cm tail. 
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(b) Re = 1.4 x 105; open wind tunnel 

Figure lo. (Continued). 

46 



t 
-80 

I I I I I I I I 

-70 -60-50 -40-30-20 - 10 10 20 30 10 20 30 
---0.1 ---0.1 

---O-2 ANGLE, ---O-2 ANGLE, 

---0.3 ---0.3 

---0.4 ---0.4 

---0.5 ---0.5 

---0.6 ---0.6 

---0.7 ---0.7 

---0.8 ---0.8 

---0.9 ---0.9 

---1.0 ---1.0 

---1.1 ---1.1 

---1.2 ---1.2 

d l-l.3 

(c) Re = 2.6 x 105; closed wind tunnel. 

Figure 10. (Concluded). 
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0.91 x lo5 OPEN TUNNEL 

As- 1.4 x lo5 OPEN TUNNEL 

--- 2.6 x lo5 CLOSED TUNNEL 

Figure 11. Pressure distribution around a 6.35-cm sphere 
fitted with a 3.5-cm tail, port 2. 

48 



Re 
0.9 x lo5 CLOSED TUNNEL 

--- 1.4 x lo5 OPEN TUNNEL 

--- 2.6 x lo5 CLOSED TUNNEL 
/ 

& 
- 

I 

I 

I 

2 

0 

1 

> 
4.4 cm 

A 

g 

4s" 

i.0 

0.6 

DEGREES 
-0.2 

-0.4 

-0.6 

-0.8 

-1.0 

-1.2 

Figure 12. Pressure distribution around a 6.36-cm sphere fitted 
with a 4.4-cm tail, port 2. 
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(a) Re = 0.91 x 105 * open wind tunnel. , 
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Figure 13. Pressure distribution around a 6.35-cm sphere 
fitted with a 3.5-cm tail, port 3. 
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(b) Re = 1.4 x 105; open wind tunnel. 

Figure 13. (Cone luded) . 
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Figure 14. Pressure distribution around a 6.35-cm sphere fitted 
with a 4.4-cm tail, port 3. 
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Figure 15. Variation of zero pressure point on the surface of the sphere with 
Reynolds number (tests in closed wind tunnel). 
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Figure 16. Variation of pressure differential Ap23/q with 
Reynolds number for the 6.35-cm sphere tested 
in the open and closed wind tunnels with tail 
attached. 
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P RANSDUCER 

(a) Schematic arrangement of transducers inside 
spherical head showing ports (1, 2, and 3). 
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(b) Cross section of spherical head, complete with tail and holder. 

Figure 18. Details of sensor design. 
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(c) View of the sensor. 

Figure 18. (Concluded). 
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(a) Schematic arrangement of the tunnel. 

Figure 19. Design of the induction wind tunnel. 
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(b) Details of the test section. 

Figure 19. (Continued). 



(c) View of sensor setup inside the induction tunnel. 
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(a) Strip chart output for Apl2. 

Airspeed U = 17.53 m/s, f = 2.94 HZ. 

eL = -24' 

(b) Strip chart output for Ap23. 
Airspeed U = 30.5 m/s, f = 2.84 Hz. 

Figure 20. Samples of observations recorded on strip chart of time- 
dependent pressure differentials Apl2 and Ap23. 
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Figure 21. Variation of pressure differentials with angle of attack 
and Reynolds number under steady flow conditions. 
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(b) Nondimensional pressure differential Aplz/q. 

Figure 21. (Concluded). 
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1 - motor 
4 - axial fan 

ST 
I, 

2 - drive shaft 
5 - guide vanes 

3 - air intake 
6 - nacelle 

7 - circular section 8 - diffuser 9 ,- honeycomb and screen 
10 - contraction 11 - transition duct 12 - vibration isolator 
13 - parallel duct 14 - oscillating setup (rig) 

Figure 22. General arrangement of the open-ended wind tunnel and the test equipment. 
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Figure 23. Schematic arrangement of the Scotch Yoke and actuating 
mechanism for producing oscillating motion. 
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Figure 24. View of the Scotch Yoke mechanism. 
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(a) Frequency f = 1.59 Hz. 

Figure 26. Variation of pressure differential Ap23/q during a complete cycle tinder oscillating 
sensor motion at a constant frequency and various R numbers. 
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(b) Frequency f = 2.92. 

Figure 26. (Cont inuetl) . 
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(c) Frequency f = 3.46. 

Figure 26. (Concluded). 
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Figure 27. Variation of pressire differential Ap12/q during a complete cycle under oscillating 
sensor motion at constant frequency and various Re numbers. 
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(b) Frequency f = 4.81. 

Figure 27. (Concluded). 
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(a) Pressure differential p23/q. 

Figure 28. Variation of pressure differentials Ap23/q and Aplz/q during a complete cycle under 
oscillating sensor motion at constant Reynolds number R = 0.635 x lo5 and various 
frequencies. 
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(b) Pressure differential p12/q. 

Figure 28. (Concluded). 
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ABOUT SPHERICAL OBJECT 
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(a) Superposition of velocity vectors during a down- (b) Superposition of velocity vectors during an 
stroke of sensor. upstroke of sensor. 

Figure 29. Superposition of velocity vectors. 



0 EXPERIMENT 

(a) Frequency f = 2.43, b,, = 1.79. 

Figure 30. Comparison of experiment with theory of pressure differential Ap23/q during 
a complete cycle at Reynolds number R = 0.365 x lo5 e and assuming b23 = 1.79. 
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(b) Frequency f = 3.57, b23 = 1.79. 

Figure 30. (Concluded). 
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Figure 31. Comparison of experiment with theory of pressure different?1 p23/q 
during a complete cycle at Reynolds number Re = 0.635 x 10 assuming 
b 23 = 1.79 and displacement 8 = degrees. 
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(b) Frequency f = 4.03. 

Figure 31. (Concluded). 

AP23 

-2.0 J 



0 EXPERIMENT 

- THEORY I AP23 

THEORY II 9 
--- 

0.8 . 

0.6 . 

. 

PROBE POSITION ANGLE, 8, DEGREES 

(a) Frequency f = 1.84. 

Figure 32. Comparison of experiment with theory of pressure differential Ap12/q during 
a complete cycle at Reynolds number Re = 0.635 x lo5 and assuming b12 = 2.03. 
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